Python API tutorial#

Setup#

Installation#

plinder is available on PyPI.

pip install plinder

Environment variable configuration#

We need to set environment variables to point to the release and iteration of choice. For the sake of demonstration, this will be set to point to a smaller tutorial example dataset, which are PLINDER_RELEASE=2024-06 and PLINDER_ITERATION=tutorial.

Note

The version used for the preprint is PLINDER_RELEASE=2024-04 and PLINDER_ITERATION=v1, while the current version with updated annotations to be used for the MLSB challenge isPLINDER_RELEASE=2024-06 and PLINDER_ITERATION=v2.

%env PLINDER_LOG_LEVEL=0
%env PLINDER_ITERATION=tutorial
env: PLINDER_LOG_LEVEL=0
env: PLINDER_ITERATION=tutorial

As alternative these variables could also be set from terminal via export (UNIX) or set (Windows).

Overview#

The user-facing subpackage of plinder is plinder.core. This provides access to the underlying utility functions for accessing the dataset, split and annotations. It provides access to five top-level functions:

  • get_config(): access PLINDER global configuration

  • query_index(): access and query annotation table

In addition, it provides access to the data class PlinderSystem for reconstituting a PLINDER system from its system_id.

To supplement these data, plinder.core.scores provides functionality for querying metrics, such as protein/ligand similarity and cluster identity.

Getting the configuration#

At first we get the configuration to check that all parameters are correctly set. In the snippet below, we will check, if the local and remote PLINDER paths point to the expected location.

import plinder.core.utils.config

cfg = plinder.core.get_config()
print(f"local cache directory: {cfg.data.plinder_dir}")
print(f"remote data directory: {cfg.data.plinder_remote}")
local cache directory: /home/runner/.local/share/plinder/2024-06/tutorial
remote data directory: gs://plinder/2024-06/tutorial

Query annotations#

Query specific columns#

To query the annotations table for specific columns or filter by specific criteria, use query_index(). The function could be called without any argument to yield a pandas dataframe of system_id, entry_pdb_id, and split, and by default only loads systems present in the train and val splits.

from plinder.core.scores import query_index

# Get system_id, entry_pdb_id, and split columns of train and val splits
query_index()
system_id entry_pdb_id split
0 3grt__1__1.A_2.A__1.B 3grt train
1 3grt__1__1.A_2.A__1.C 3grt train
2 3grt__1__1.A_2.A__2.B 3grt train
3 3grt__1__1.A_2.A__2.C 3grt train
4 1grx__1__1.A__1.B 1grx train
... ... ... ...
419533 5lps__1__1.A__1.B 5lps train
419534 5lps__1__2.A__2.B 5lps train
419535 5lpv__1__1.A__1.B_1.C_1.D 5lpv train
419536 5lpv__1__1.A__1.B_1.C_1.D 5lpv train
419537 5lpv__1__1.A__1.B_1.C_1.D 5lpv train

419538 rows × 3 columns

The function can be called by passing columns argument, which is a list of column names.

# Get specific columns from the annotation table
cols_of_interest = ["system_id", "entry_pdb_id", "entry_release_date", "entry_oligomeric_state", "entry_validation_clashscore", "entry_resolution"]
query_index(columns=cols_of_interest)
system_id entry_pdb_id entry_release_date entry_oligomeric_state entry_validation_clashscore entry_resolution split
0 3grt__1__1.A_2.A__1.B 3grt 1997-02-12 dimeric 12.90 2.50 train
1 3grt__1__1.A_2.A__1.C 3grt 1997-02-12 dimeric 12.90 2.50 train
2 3grt__1__1.A_2.A__2.B 3grt 1997-02-12 dimeric 12.90 2.50 train
3 3grt__1__1.A_2.A__2.C 3grt 1997-02-12 dimeric 12.90 2.50 train
4 1grx__1__1.A__1.B 1grx 1993-10-01 monomeric NaN NaN train
... ... ... ... ... ... ... ...
419533 5lps__1__1.A__1.B 5lps 2016-08-14 dimeric 1.47 1.27 train
419534 5lps__1__2.A__2.B 5lps 2016-08-14 dimeric 1.47 1.27 train
419535 5lpv__1__1.A__1.B_1.C_1.D 5lpv 2016-08-15 monomeric 1.68 2.70 train
419536 5lpv__1__1.A__1.B_1.C_1.D 5lpv 2016-08-15 monomeric 1.68 2.70 train
419537 5lpv__1__1.A__1.B_1.C_1.D 5lpv 2016-08-15 monomeric 1.68 2.70 train

419538 rows × 7 columns

Query annotations with specific filters#

We could also pass additional filters, where each filter is a logical comparison of a column name with some given value. Only those rows, that fulfill all conditions, are returned. See the description of pandas.read_parquet() for more information on the filter syntax.

# Query for single-ligand systems
filters = [("system_num_ligand_chains", "==", 1)]
query_index(columns=cols_of_interest, filters=filters)
system_id entry_pdb_id entry_release_date entry_oligomeric_state entry_validation_clashscore entry_resolution split
0 3grt__1__1.A_2.A__1.B 3grt 1997-02-12 dimeric 12.90 2.50 train
1 3grt__1__1.A_2.A__1.C 3grt 1997-02-12 dimeric 12.90 2.50 train
2 3grt__1__1.A_2.A__2.B 3grt 1997-02-12 dimeric 12.90 2.50 train
3 3grt__1__1.A_2.A__2.C 3grt 1997-02-12 dimeric 12.90 2.50 train
4 1grx__1__1.A__1.B 1grx 1993-10-01 monomeric NaN NaN train
... ... ... ... ... ... ... ...
230141 3lp0__1__1.A_1.B__1.F 3lp0 2010-02-04 dimeric 5.97 2.79 train
230142 3lp0__2__1.A_1.B__1.F 3lp0 2010-02-04 dimeric 5.97 2.79 train
230143 3lp0__2__2.A_2.B__2.F 3lp0 2010-02-04 dimeric 5.97 2.79 train
230144 5lps__1__1.A__1.B 5lps 2016-08-14 dimeric 1.47 1.27 train
230145 5lps__1__2.A__2.B 5lps 2016-08-14 dimeric 1.47 1.27 train

230146 rows × 7 columns

Query systems in test, removed, or unassigned splits#

The splits parameter is set to [“train”, “val”] by default but can take one or more of [“train”, “val”, “test”, “removed”, “all”]. By querying with [“*”], we get all 1.3 million rows, including those from the test and removed splits as well ion systems and systems with >5 protein and/or ligand chains (labelled “unassigned”):

df = query_index(columns=cols_of_interest, splits=["*"])
df.drop_duplicates("system_id")["split"].value_counts()
split
unassigned    581565
train         309140
removed        98718
val              832
test               5
Name: count, dtype: int64

Note

To load all the columns, users can use the function get_plindex() which returns all the columns in the dataframe. However, since this table has over 1.3 million rows and over 700 columns, it has a significant memory footprint (~24G RAM) and users are advised to query only columns they need.

Query protein similarity#

The are three kinds of similarity datasets we provide:

  • Similarity between ligand bound structures (holo)

  • Similarity between ligand bound and unbound protein structures (apo)

  • Similarity between ligand bound and Alphafold predicted structures (pred) Any of these could be specified with query_protein_similarity()

Note

With the full dataset, some similarity queries might require a large amount of memory. For example, `query_protein_similarity(search_db=“holo”, filters=[(“similarity”, “>”, “50”)]) will use up >500G RAM.:::

Here, we will query protein similarity dataset to assess the protein-ligand interaction similarity between example training and test set

from plinder.core.scores import query_protein_similarity

# Example train systems
train = ["7jxf__1__1.A_1.B__1.G", "1jtu__1__1.A_1.B__1.C_1.D",
         "8f9d__2__1.C_1.D__1.G", "6a9a__1__1.A_2.A__2.C_2.D",
         "1b5e__2__1.A_1.B__1.D"]
# Example test systems
test = ["1b5d__1__1.A_1.B__1.D", "1s2g__1__1.A_2.C__1.D",
       "4agi__1__1.C__1.W", "4n7m__1__1.A_1.B__1.C",
         "7eek__1__1.A__1.I"]

metric = "pli_unique_qcov"
threshold = 50
query_protein_similarity(
        search_db="holo",
        columns=["query_system", "target_system", "similarity"],
        filters=[
                ("query_system", "in", test),
                ("target_system", "in", train),
                ("metric", "==", metric),
                ("similarity", ">=", str(threshold)),
            ],
)
query_system target_system similarity
0 1b5d__1__1.A_1.B__1.D 1b5e__2__1.A_1.B__1.D 83
1 1b5d__1__1.A_1.B__1.D 6a9a__1__1.A_2.A__2.C_2.D 83
2 1b5d__1__1.A_1.B__1.D 1jtu__1__1.A_1.B__1.C_1.D 67
3 1b5d__1__1.A_1.B__1.D 7jxf__1__1.A_1.B__1.G 67
4 4n7m__1__1.A_1.B__1.C 8f9d__2__1.C_1.D__1.G 50

Working with a PLINDER system#

A PlinderSystem is the representation of a single System. This object provides access to all PDB entry and system level annotations, as well as the structures of the system components.

Load systems from IDs#

To reconstitute PLINDER systems directly from a set of IDs use class PlinderSystem.

from plinder.core import PlinderSystem

plinder_system = PlinderSystem(system_id="4agi__1__1.C__1.W")

Users can choose the granularity level of input: In the cases above the systems were specified by their system ID, but as alternative passing PDB IDs (or their two middle characters) is also possible, which gives you all systems corresponding to the given PDB IDs.

Accessing annotations#

The PlinderSystem.entry property provides PDB entry-level annotations for that system. Here, we will list the accessible categories of entry annotations and access the oligomeric state of a given system.

entry_annotations = plinder_system.entry
print(list(entry_annotations.keys()))
print(entry_annotations["oligomeric_state"])
['pdb_id', 'release_date', 'oligomeric_state', 'determination_method', 'keywords', 'pH', 'resolution', 'chains', 'ligand_like_chains', 'systems', 'covalent_bonds', 'chain_to_seqres', 'validation', 'pass_criteria', 'water_chains', 'symmetry_mate_contacts']
dimeric

Instead, PlinderSystem.system returns annotations on the system level. Here, we will extract the SMILES string of the first ligand of a given system.

system_annotations = plinder_system.system
print(list(system_annotations.keys()))
# Show ligand smiles of the first ligand of a given system
print(system_annotations["ligands"][0]["rdkit_canonical_smiles"])
['pdb_id', 'biounit_id', 'ligands', 'ligand_validation', 'pocket_validation', 'pass_criteria']
C[Se][C@@H]1O[C@@H](C)[C@@H](O)[C@@H](O)[C@@H]1O

Getting structure file paths#

The PlinderSystem also provides access to the structure files the system is based on. This could be helpful for loading the structures for training a model or performing other calculations that require structural information.

print(plinder_system.ligand_sdfs)
print(plinder_system.smiles)
{'1.W': '/home/runner/.local/share/plinder/2024-06/tutorial/systems/4agi__1__1.C__1.W/ligand_files/1.W.sdf'}
{'1.W': 'C[Se][C@@H]1O[C@@H](C)[C@@H](O)[C@@H](O)[C@@H]1O'}

The same can be done for the receptor protein.

print(plinder_system.receptor_pdb)
print(plinder_system.receptor_cif)
print(plinder_system.sequences)
/home/runner/.local/share/plinder/2024-06/tutorial/systems/4agi__1__1.C__1.W/receptor.pdb
/home/runner/.local/share/plinder/2024-06/tutorial/systems/4agi__1__1.C__1.W/receptor.cif
{'1.C': 'MSTPGAQQVLFRTGIAAVNSTNHLRVYFQDVYGSIRESLYEGSWANGTEKNVIGNAKLGSPVAATSKELKHIRVYTLTEGNTLQEFAYDSGTGWYNGGLGGAKFQVAPYSXIAAVFLAGTDALQLRIYAQKPDNTIQEYMWNGDGWKEGTNLGGALPGTGIGATSFRYTDYNGPSIRIWFQTDDLKLVQRAYDPHKGWYPDLVTIFDRAPPRTAIAATSFGAGNSSIYMRIYFVNSDNTIWQVCWDHGKGYHDKGTITPVIQGSEVAIISWGSFANNGPDLRLYFQNGTYISAVSEWVWNRAHGSQLGRSALPPA'}